
Texture Mapping

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Introduce Mapping Methods
- Texture Mapping
- Environment Mapping
- Bump Mapping

• Consider basic strategies
- Forward vs backward mapping
- Point sampling vs area averaging

3
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The Limits of Geometric
Modeling

• Although graphics cards can render over
10 million polygons per second, that
number is insufficient for many phenomena

- Clouds
- Grass
- Terrain
- Skin

4
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Modeling an Orange

• Consider the problem of modeling an orange
(the fruit)

• Start with an orange-colored sphere
- Too simple

• Replace sphere with a more complex shape
- Does not capture surface characteristics (small

dimples)
- Takes too many polygons to model all the dimples

5
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Modeling an Orange (2)

• Take a picture of a real orange, scan it,
and “paste” onto simple geometric model

- This process is known as texture mapping

• Still might not be sufficient because
resulting surface will be smooth

- Need to change local shape
- Bump mapping

6
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Texture Mapping

geometric model texture mapped

7
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Is it simple?

• Although the idea is simple---map an
image to a surface---there are 3 or 4
coordinate systems involved

2D image

3D surface

8
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Texture Mapping

parametric coordinates

texture coordinates
world coordinates window coordinates

9
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2006

Parametric Form

• For sphere

•  Tangent plane determined by vectors

• Normal given by cross product

x=x(u,v)=cos u sin v
y=y(u,v)=cos u cos v
z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T
∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v

1
0Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Mapping Functions

• Basic problem is how to find the maps
• Consider mapping from texture
coordinates to a point a surface

• Appear to need three functions
x = x(s,t)
y = y(s,t)
z = z(s,t)

• But we really want
to go the other way

s

t

(x,y,z)

1
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Backward Mapping

•  We really want to go backwards
-  Given a pixel, we want to know to which point

on an object it corresponds
-  Given a point on an object, we want to know

to which point in the texture it corresponds
•  Need a map of the form

s = s(x,y,z)
t = t(x,y,z)

•  Such functions are difficult to find in general

1
2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Two-part mapping

• One solution to the mapping problem is to
first map the texture to a simple
intermediate surface

• Example: map to cylinder

1
3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Cylindrical Mapping

parametric cylinder

x = r cos 2π u
y = r sin 2πu
z = v/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

s = u
t = v

maps from texture space

1
4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Spherical Map

We can use a parametric sphere

x = r cos 2πu
y = r sin 2πu cos 2πv
z = r sin 2πu sin 2πv

in a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

1
5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Second Mapping

• Map from intermediate object to actual object
- Normals from intermediate to actual
- Normals from actual to intermediate
- Vectors from center of intermediate

intermediate actual

OpenGL Texture Mapping

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

1
7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Basic Strategy

Three steps to applying a texture
1.  specify the texture

•  read or generate image
•  assign to texture
•  enable texturing

2.  assign texture coordinates to vertices
•  Proper mapping function is left to application

3.  specify texture parameters
•  wrapping, filtering

1
8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Texture Mapping

s

t

x

y

z

image

geometry display

1
9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Texture Example

• The texture (below) is a
256 x 256 image that has
been mapped to a
rectangular polygon which
is viewed in perspective

2
0Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• Define a texture image from an array of
 texels (texture elements) in CPU memory
 Glubyte my_texels[512][512];

• Define as any other pixel map
-  Scanned image
- Generate by application code

• Enable texture mapping
- glEnable(GL_TEXTURE_2D)
- OpenGL supports 1-4 dimensional texture maps

Specifying a Texture Image

2
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Define Image as a Texture

glTexImage2D(target, level, components,
 w, h, border, format, type, texels);

 target: type of texture, e.g. GL_TEXTURE_2D
 level: used for mipmapping (discussed later)
 components: elements per texel
 w, h: width and height of texels in pixels
 border: used for smoothing (discussed later)
 format and type: describe texels
 texels: pointer to texel array

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,
GL_RGB, GL_UNSIGNED_BYTE, my_texels);

2
2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Converting A Texture
Image

• OpenGL requires texture dimensions to be
powers of 2

• If dimensions of image are not powers of 2
• gluScaleImage(format, w_in, h_in,
 type_in, *data_in, w_out, h_out,

 type_out, *data_out);
- data_in is source image
- data_out is for destination image

• Image interpolated and filtered during scaling

2
3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• Based on parametric texture coordinates
• glTexCoord*() specified at each vertex

s

t 1, 1
0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a Texture

2
4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Typical Code

glBegin(GL_POLYGON);
 glColor3f(r0, g0, b0); //if no shading used
 glNormal3f(u0, v0, w0); // if shading used
 glTexCoord2f(s0, t0);
 glVertex3f(x0, y0, z0);
 glColor3f(r1, g1, b1);
 glNormal3f(u1, v1, w1);
 glTexCoord2f(s1, t1);
 glVertex3f(x1, y1, z1);
 .
 .
glEnd();

Note that we can use vertex arrays to increase efficiency

2
5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Wrapping Mode

Clamping: if s,t > 1 use 1, if s,t <0 use 0
Wrapping: use s,t modulo 1

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

s

t

GL_CLAMP
wrapping

GL_REPEAT
wrapping

